Coordinate Geometry

1 The straight line l has the equation $y=1-2 x$.
The straight line m is perpendicular to l and passes through the point with coordinates $(6,-1)$.
a Find the equation of m in the form $a x+b y+c=0$, where a, b and c are integers.
b Find the coordinates of the point where l and m intersect.

2 The straight line l passes through the point $A(1,-3)$ and the point $B(7,5)$.
a Find an equation of line l.
The line m has the equation $4 x+y-17=0$ and intersects l at the point C.
b Show that C is the mid-point of $A B$.
c Show that the straight line perpendicular to m which passes through the point C also passes through the origin.

3 The point A has coordinates $(-2,7)$ and the point B has coordinates $(4, p)$.
The point M is the mid-point of $A B$ and has coordinates $\left(q, \frac{9}{2}\right)$.
a Find the values of the constants p and q.
b Find the equation of the straight line perpendicular to $A B$ which passes through the point A. Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.

4

The points $P(-5,-2), Q(-1,6), R(7,7)$ and $S(3,-1)$ are the vertices of a parallelogram as shown in the diagram above.
a Find the length of $P Q$ in the form $k \sqrt{5}$, where k is an integer to be found.
b Find the coordinates of the point M, the mid-point of $P Q$.
c Show that $M S$ is perpendicular to $P Q$.
d Find the area of parallelogram $P Q R S$.
5 The straight line l is parallel to the line $2 x-y+4=0$ and passes through the point with coordinates $(-1,-3)$.
a Find an equation of line l.
The straight line m is perpendicular to the line $6 x+5 y-2=0$ and passes through the point with coordinates $(4,4)$.
b Find the equation of line m in the form $a x+b y+c=0$, where a, b and c are integers.
c Find, as exact fractions, the coordinates of the point where lines l and m intersect.

6 The straight line l has gradient $\frac{1}{2}$ and passes through the point with coordinates $(2,4)$.
a Find the equation of l in the form $a x+b y+c=0$, where a, b and c are integers.
The straight line m has the equation $y=2 x-6$.
b Find the coordinates of the point where line m intersects line l.
c Show that the quadrilateral enclosed by line l, line m and the positive coordinate axes is a kite.

7

The diagram shows the straight line l with equation $x+2 y-20=0$ and the straight line m which is perpendicular to l and passes through the origin O.
a Find the coordinates of the points A and B where l meets the x-axis and y-axis respectively.
Given that l and m intersect at the point C,
b find the ratio of the area of triangle $O A C$ to the area of triangle $O B C$.
8 The straight line p has the equation $6 x+8 y+3=0$.
The straight line q is parallel to p and crosses the y-axis at the point with coordinates $(0,7)$.
a Find the equation of q in the form $y=m x+c$.
The straight line r is perpendicular to p and crosses the x-axis at the point with coordinates $(1,0)$.
b Find the equation of r in the form $a x+b y+c=0$, where a, b and c are integers.
c Show that the point where lines q and r intersect lies on the line $y=x$.
9 The vertices of a triangle are the points $P(3, c), Q(9,2)$ and $R(3 c, 11)$ where c is a constant.
Given that $\angle P Q R=90^{\circ}$,
a find the value of c,
b show that the length of $P Q$ is $k \sqrt{10}$, where k is an integer to be found,
c find the area of triangle $P Q R$.
10 The straight line l_{1} passes through the point $P(1,3)$ and the point $Q(13,12)$.
a Find the length of $P Q$.
b Find the equation of l_{1} in the form $a x+b y+c=0$, where a, b and c are integers.
The straight line l_{2} is perpendicular to l_{1} and passes through the point $R(2,10)$.
c Find an equation of line l_{2}.
d Find the coordinates of the point where lines l_{1} and l_{2} intersect.
e Find the area of triangle $P Q R$.

